Министерство образования Республики Беларусь

Учреждение образования

Белорусский государственный университет информатики и радиоэлектроники

Кафедра РТС

Отчет по лабораторной работе №2 «ИССЛЕДОВАНИЕ ГЕНЕРАТОРА С ВНЕШНИМ ВОЗБУЖДЕНИЕМ»

Выполнил: Проверил:

ст.гр. 240102 Крючков М.И. shlom41k

Цель работы

Ознакомление с физическими процессами, происходящими в генераторе с внешним возбуждением (ГВВ). Экспериментальный и расчетный анализ влияния питающих и высокочастотных напряжений, нагрузки на напряженность режима, форму выходного тока, выходную мощность, коэффициент полезного действия транзисторного ГВВ.

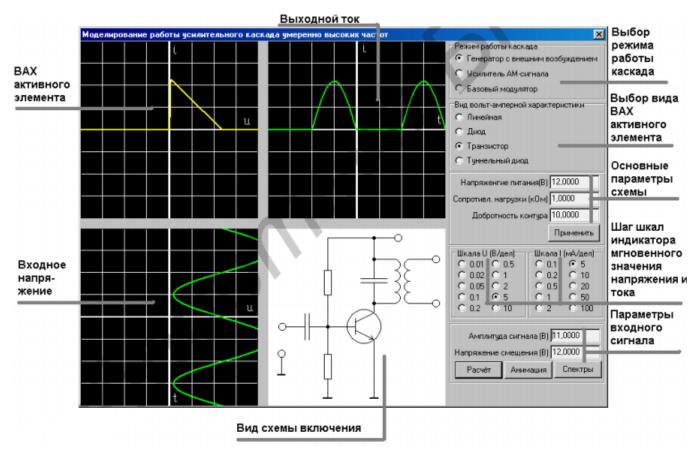


Рисунок 1 – Вид основного окна программы

Выполнение работы

1. Установили напряжение смещения равным 0,3 B, уровень входного сигнала — 0,1 B, что соответствует режиму A усилительного каскада. Записали значения гармонических составляющих напряжений U_0 , U_1 , U_2 , U_3 , U_4 в спектре выходного сигнала и значение коэффициента гармоник K_{Γ} .

E_c , B	U_{e}, B	U_0, B	U_{l}, B	U_2, B	U_3, B	U_4, B	<i>K</i> _Γ , %
0,3	0,1	0,3125	0,245	0,005	0,01	0	0,2664

2. Установили напряжение смещения равным напряжению отсечки $(0,2\ B)$. Записали значения напряжений $U_0,\ U_1,\ U_2,\ U_3,\ U_4$ в спектре выходного сигнала и значение коэффициента гармоник K_Γ для уровней входного сигнала $0,1\ B;\ 0,2\ B;\ 0,4\ B;\ 0,6\ B;\ 0,8\ B$ и $1\ B$.

E_c , B	U_e, B	U_0, B	U_I, B	U_2, B	U_3, B	U_4, B	<i>K</i> _Γ , %
	0,1	0,125	0,1425	0,035	0,0025	0,0005	1,7256
0,2	0,2	0,125	0,1425	0,035	0,0025	0,0005	1,7256
, z	0,4	0,28	0,41	0,11	0,065	0,0525	1,9115
$(\theta = 90^{\circ})$	0,6	0,315	0,445	0,09	0,1	0,06	1,6599
(0-30)	0,8	0,325	0,4625	0,075	0,12	0,055	1,5329
	1	0,3375	0,4625	0,0625	0,125	0,05	1,4667

U_e, B	U_2/U_1	U_3/U_1	U_4/U_1
0,1	0,2456	0,0175	0,0035
0,2	0,2456	0,0175	0,0035
0,4	0,2683	0,1585	0,1280
0,6	0,2022	0,2247	0,1348
0,8	0,1622	0,2595	0,1189
1	0,1351	0,2703	0,1081

Построили зависимости отношения амплитуд высших гармоник к первой при изменении амплитуды сигнала $U_i/U_1=f\left(U_B\right)$ а также зависимости $K_{\varGamma}=f\left(U_B\right)$.

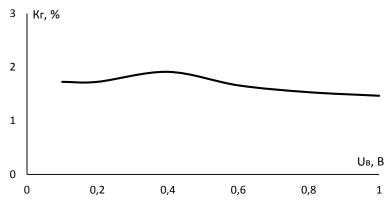


Рисунок 2 — График зависимости $K_{\Gamma} = f\left(U_{B}\right)$

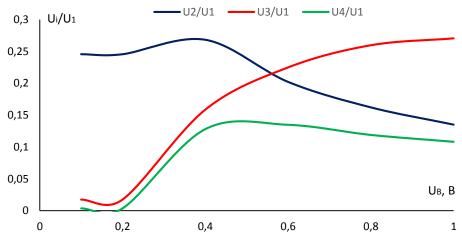


Рисунок
 $\mathcal{3}-\Gamma$ рафики зависимостей U_{i} / U_{1}
= $f\left(U_{B}\right)$

3. Провели анализ работы ГВВ в режиме удвоения частоты, т.е. при значении угла отсечки, равном 60° . Напряжение отсечки приняли равным 0,2 B. Задали уровень входного сигнала равным 0,1 B и рассчитали напряжение смещения для данного режима по формуле

$$E_C = E' - U_B \cos \theta \tag{1}$$

Установили рассчитанное значение E_C и определили значения U_0 , U_1 , U_2 , U_3 , U_4 и K_Γ . Аналогичные расчеты по формуле (1) провели для U_B , равных 0,2 B; 0,4 B; 0,6 B; 0,8 B; 1 B.

E_c , B	U_e , B	U_0, B	U_I, B	U_2, B	U_3, B	U_4, B	K_{Γ} , %
0,15	0,1	0,065	0,08125	0,02625	0,005	0	2,1971
0,1	0,2	0,07	0,1325	0,07	0,0225	0,0025	3,5678
0	0,4	0,13	0,23	0,15	0,065	0,005	4,3643
-0,1	0,6	0,17	0,3	0,19	0,075	0,0075	4,3694
-0,2	0,8	0,1875	0,325	0,2125	0,0625	0,025	4,2544
-0,3	1	0,2	0,35	0,2125	0,0625	0,0375	4,1839

U_e, B	U_2/U_1	U_3/U_1	U_4/U_1
0,1	0,3231	0,0615	0
0,2	0,5283	0,1698	0,0189
0,4	0,6522	0,2826	0,0217
0,6	0,6333	0,25	0,025
0,8	0,6538	0,1923	0,0769
1	0,6071	0,1786	0,1071

Построили зависимости отношения амплитуд высших гармоник к первой при изменении амплитуды сигнала $U_i/U_1=f\left(U_B\right)$ а также зависимости $K_{\varGamma}=f\left(U_B\right)$.

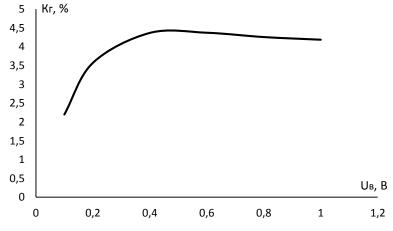


Рисунок 4 — График зависимости $K_{\Gamma} = f\left(U_{B}\right)$

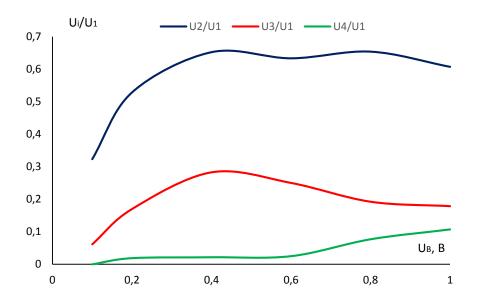


Рисунок 5 — График зависимостей $U_i/U_1 = f\left(U_B\right)$

4. По аналогии с пунктом 3 провели анализ работы ГВВ в режиме утроения частоты, т.е при значении угла отсечки, равном 40^{0} .

E_c , B	U_{e}, B	U_0, B	U_{I}, B	U_2, B	U_3, B	U_4, B	K_{Γ} , %
0,123	0,1	0,0425	0,055	0,02	0,005	0	2,3682
0,047	0,2	0,04	0,0675	0,04	0,0175	0,005	3,9766
-0,106	0,4	0,05	0,095	0,07	0,045	0,02	5,3181
-0,26	0,6	0,065	0,125	0,105	0,07	0,04	5,8024
-0,413	0,8	0,0875	0,1625	0,125	0,1	0,0625	5,9814
-0,558	1	0,1	0,1875	0,1625	0,1125	0,0625	6,0278

U_e, B	U_2/U_1	U_3/U_1	U_4/U_1
0,1	0,3636	0,0909	0
0,2	0,5926	0,2593	0,0741
0,4	0,7368	0,4737	0,2105
0,6	0,84	0,56	0,32
0,8	0,7692	0,6154	0,3846
1	0,8667	0,6	0,3333

Построили зависимости отношения амплитуд высших гармоник к первой при изменении амплитуды сигнала $U_i/U_1=f\left(U_B\right)$ а также зависимости $K_{\varGamma}=f\left(U_B\right)$.

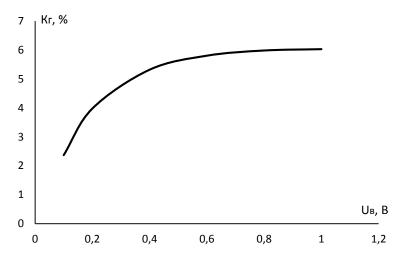


Рисунок 6 – График зависимости $K_{\Gamma} = f\left(U_{B}\right)$

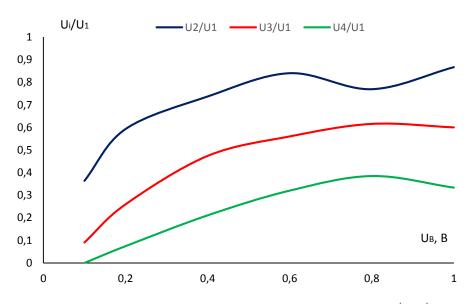


Рисунок 7 – График зависимостей $U_i / U_1 = f(U_B)$

Вывод

В данной лабораторной работе была проанализирована работа ГВВ при разных значениях угла отсечки, напряжения отсечки, напряжения смещения и напряжения возбуждения, спектры сигналов в различных сечениях каскада.